Hall Ticl	ket Number:	
	CE/EC/ME121 (R20)
B.Tl	ECH. DEGREE EXAMINATION, SEPTEMBER-20	24
	Semester II [First Year] (Supplementary)	
	MATHEMATICS - II	
Time: T	hree hours Maximum Mari	ks: 70
	Answer Question No.1 compulsorily. $(14 \times 1 = 14$ Answer One Question from each unit. $(4 \times 14 = 56$)
1. Ans	wer the following:	
(a)	Find the solution of $\frac{dy}{dx} + y = 0$, given that $y(0) = 5$.	CO1
	Find the integrating factor of $xy' + y = x^3y^6$.	CO ₁
	Find the differential equation whose auxiliary	
	equation has the roots 0, -1, -1.	CO ₁
(d)	Write the general form of Legendre's linear equation.	CO ₂
(e)	Find the value of the integral $\int_0^3 \int_0^2 (4 - y)^2 dy dx$.	CO ₂
(f)	Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{1}^{y} dx dy dz$.	CO ₂
(g)	State Green's theorem.	CO3
(h)	Define circulation.	CO3
(i)	State Stokes' theorem	CO3
(j)	Give an example for regular function.	CO4
(k)	For what values of k the function $2x - x^2 + ky^2$ is	
	harmonic.	CO4
(1)	Write Cauchy's integral theorem.	CO4
(m)	Find $\int_C \frac{1}{z-a} dz$ where C: $ z-a = r$.	CO ₄
(n)	Define entire function.	CO4

UNIT - I

2. (a) Solve: $y \log y dx + (x - \log y) dy = 0$. (7M) CO1 (b) Solve: $\tan y \frac{dy}{dx} + \tan x = \cos y \cos^2 x$. (7M) CO1

- 3. (a) Solve: $y'' 2y' + 2y = x + e^x \cos x$.
- (7M) CO1
- (b) Solve: $x^2 \frac{d^2y}{dx^2} + 5x \frac{dy}{dx} + 4y = x \log x$.
- (7M) CO1

UNIT - II

- 4. (a) Evaluate $\int_0^1 \int_x^{\sqrt{x}} xy dy dx$ by changing the order of integration. (7M) CO2
 - (b) Evaluate $\iint r \sin \theta \, dr \, d\theta$ over the cardioid $r = a (1 \cos \theta)$ above the initial line. (7M) CO2

(OR)

5. (a) Find, by double integration, the area lying between the parabola $y = x^2$ and the line x + y - 2 = 0.

(7M) CO2

(b) Find the volume bounded by the paraboloid $x^2 + y^2 = az$, the cylinder $x^2 + y^2 = 2ay$ and the plane z = 0.

(7M) CO2

UNIT - III

6. (a) Apply Green's theorem to evaluate $\int_{c} [(xy + y^{2})dx + x^{2} dy] \text{ where } c \text{ is bounded}$ by y = x and $y = x^{2}$.

(7M) CO3

(b) Evaluate $\int_S F.NdS$, where F = 18zi - 12j + 3yk and S is the portion of the plane 2x + 3y + 6z = 12 in the first octant.

(7M) CO3

(OR)

7. (a) Show that $f(x) = \begin{cases} \frac{z^5}{|z|^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ satisfies C-R equations at z = 0 but not differentiable at z = 0. (7M) CO3

(b) Show that an analytic function of constant absolute value is constant. (7

(7M) CO3

UNIT-IV

- 8. (a) Find the analytic function f(z) = u + iv when $v = r^2 \cos 2\theta r \cos \theta + 2$. (7M) CO4
 - (b) Show that u = 4xy 3x + 2 is harmonic. Also construct the corresponding analytic function f(z) = u + iv interms of z. (7M) CO4

(OR)

- 9. (a) Evaluate $\int_0^{2+i} z^2 dz$ along the imaginary axis 0 to i and then horizontally to 2+i. (7M) CO4
 - (b) Evaluate $\int_C \frac{z^2-z-1}{z(z-1)} dz$, where C: $\left|z-\frac{1}{z}\right|=1$ using Cauchy's integral formula. (7M) CO4

CE/EC/ME121 (R20)

Hall Ticke	t Number:	
	CE/EC/ME121	(R20)
В	TECH. DEGREE EXAMINATION, JULY-2024	
	Semester II [First Year] (Regular)	
	MATHEMATICS-II	
Time: The		arks: 70
	Answer Question No.1 compulsorily. $(14 \times 1 = 1 \text{ Answer One Question from each unit. } (4 \times 14 = 5 \text{ Answer One Question from each unit. } (4 \times 14 = 5 \text{ Answer Question from each unit. } (4 \times 14 \times 14 = 5 \text{ Answer Question from each unit. } (4 \times 14 = 5 \text{ Answer Question from each unit. } (4 \times 14 = 5 \text{ Answer Question from each unit. } (4 \times 14 \times$	
1. Ansv	ver the following:	
(a)	Write Bernoulli's differential equation.	CO1
(b)	Solve $(D^2 + 1)y = 0$.	CO1
(c)	Write Legendar's linear equation.	CO1
(d)	Change the order of integration $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x, y) dxdy$	CO2
(e)	Evaluate $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz$	CO2
(f)	Evaluate $\int_0^1 \int_0^x e^x dxdy$	CO2
(g)	State Green's theorem.	CO3
(h)	State Gauss Divergence theorem.	CO3
(i)	Write C-R equations in polar forms.	CO3
(j)	Give an example of not an analytic function.	CO3
(k)	Define harmonic function.	CO4
(1)	Write Cauchy's integral formula.	CO4
(m)	Evaluate $\int_C \frac{dz}{z+2}$ where C is the circle $ z =1$.	CO4
(n)	State Cauchy's theorem.	CO4
	UNIT – I	

2. (a) Solve
$$(x + 1)\frac{dy}{dx} - y = e^{3x}(x + 1)^2$$
 (7M) CO1
(b) Solve $(D^2 - 2D + 4)y = e^x \cos x$. (7M) CO1

- 3. (a) Solve $(1 + y^2) dx = (\tan^{-1} y x) dy$. (7M) CO1
 - (b) Using the method of variation of parameters, Solve $\frac{d^2y}{dx^2} + 4y = \tan 2x$ (7M) CO1

UNIT - II

- 4. (a) Change the order of integration and hence evaluate the double integral $\int_{1}^{2} \int_{x^2}^{2-x} xy \, dx dy$ (7M) CO2
 - (b) Evaluate the integral ∫∫∫ xy²z dx dy dz taken through the positive octant of the sphere x² + y² + z² = a². (7M) CO2

(OR)

- 5. (a) Evaluate $\iint (x^2 + y^2) dx dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (7M) CO2
 - (b) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $16a^2/3$ (7M) CO2

UNIT-III

6. Verify Gauss divergence theorem for the vector function $F = y\bar{i} + x\bar{j} + z^2\bar{k}$, over the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0 and z = 2.

- 7. (a) Applying Green's theorem evaluate $\oint_C ((y \sin x) dx + \cos x dy), \text{ where C is the plane triangle enclosed by the lines } y = 0,$ $x = \frac{\pi}{2} \text{ and } y = \frac{2}{\pi}x. \tag{7M} \text{ CO3}$
 - (b) Construct the analytic function whose real part is $u = e^{-x}[(x^2 y^2)\cos y + 2xy\sin y]$. (7M) CO3

UNIT-IV

8. (a) Evaluate $\int_c \frac{z^3 + z^2 + 2z - 1}{(z - 1)^3} dz$ where c is the circle |z| = 3 using Cauchy's integral formula.

(7M) CO4

(b) Show that the function $u = 2\log(x^2 + y^2)$ is harmonic and find its harmonic conjugate. (7M) CO4

(OR)

- 9. (a) Using Milne-Thomson's method, find the analytic function f(z) when its real part is $u = e^x[(x^2 y^2)\cos y 2xy\sin y]$. (7M) CO4
 - (b) Apply Cauchy's theorem to evaluate $\int_{c} \frac{z^{2}-z+1}{z-1} dz, \text{ where C is the circle } |z| = \frac{1}{2}.$ (7M) CO4

CE/EC/ME121(R20)

CE/EC/ME121 (R20)

B.TECH. DEGREE EXAMINATION, MAY-2024

Semester II [First Year] (Supplementary)

MATHEMATICS-II

Time: Three hours

Maximum Marks: 70

Answer Question No.1 compulsorily. $(14 \times 1 = 14)$

Answer One Question from each unit. $(4 \times 14 = 56)$

- 1. Answer the following:
 - (a) Define the linear differential equation. CO1
 - (b) Write conditions for the exact differential equations. CO1
 - (c) Write Cauchy's homogeneous linear equation. CO1
 - (d) Evaluate $\iint_{0}^{1} \int_{0}^{1} dx dy dz$ CO2
 - (e) Evaluate $\int_0^1 \int_0^x e^x dxdy$ CO2
 - (f) Change the order of integration $\int_{x=a}^{x=b} \int_{y=f_1(x)}^{f_2(x)} f(x,y) dy dx.$ CO2
 - (g) State Stoke's theorem. CO3
 - (h) State Gauss divergence theorem. CO3
 - (i) Write C-R equations. CO3 (j) Define analytic function. CO3
 - (j) Define analytic function. CO3
 (k) State Milne-Thomson method. CO4
 - (1) Evaluate $\int \frac{z^3}{(z-2)^2} dz$ where C is the circle |z| = 1. CO4
 - (m) Define harmonic function. CO4
 - (n) State Cauchy's integral formula. CO4

UNIT - I

- 2. (a) Solve $x \frac{dy}{dx} + y = \log x$ (7M) CO1
 - (b) Solve $(D^2 2D + 4)y = e^x \cos x$. (7M) CO1

3. (a) Solve $(xy^2 - e^{1/x^3}) dx - x^2y dy = 0$. (7M) CO1

(b) Using the method of variation of parameters,

solve
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$$
 (7M) CO1

UNIT-II

4. (a) Evaluate $\int_{0}^{a} \int_{0}^{x} \int_{0}^{x+y} e^{(x+y+z)} dz dy dx$ (7M) CO2

(b) Change the order of integration in $\int_{0}^{1} \int_{s^{2}}^{2-x} xy dx dy$ and hence evaluate the same. (7M) CO2

(OR)

5. (a) Show that the area between the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $16a^2/3$. (7M) CO2

(b) Find the Volume bounded by the Cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0. (7M) CO2

UNIT - III

6. Verify Stoke's theorem for $F = (x^2 + y^2)\vec{j} - 2xy\vec{j}$ taken around the rectangle bounded by the lines $x = \pm a, y = 0, y = b$.

- 7. (a) Evaluate $\int_c (x^2 + xy)dx + (x^2 + y^2)dy$ where c is the square formed by the lines $y = \pm 1$ and $x = \pm 1$ (7M) CO3
 - (b) Construct the analytic function whose real part is $u = e^{-x}[(x^2 y^2)\cos y + 2xy\sin y]$. (7M) CO3

UNIT - IV

- 8. (a) Using Milne-Thomson's method, find the analytic function f(z) when its real part is $u = e^x \left[(x^2 - y^2) \cos y - 2xy \sin y \right].$ (7M) CO4
 - (b) Determine $\oint_C \frac{z^2-z+1}{z-1} dz$, Where C is the circle |z| = 1. (7M) CO4

(OR)

- 9. (a) Find the analytic function whose imaginary part is $v = \frac{2sinx \sin y}{cos2x + cosh2y}$. Evaluate $\oint_C \frac{z^3 + z^2 + 2z - 1}{(z-1)^3} dz$, where c is (7M) CO4
 - (b) Evaluate |z| = 3 using Cauchy's integral formula. (7M) CO4

CE/EC/ME121 (R20)

CE/EC/ME121 (R20)

B.TECH. DEGREE EXAMINATION, NOVEMBER-2023

Semester II [First Year] (Supplementary)

MATHEMATICS - II

Time: Three hours

Maximum Marks: 70

Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$

1.	Ans	wer the following:	
	(a)	Write Bernoulli's equation.	CO1
	(b)	Define exact differential equation.	CO1
	(c)	Solve $(D^2 + 1)y = 0$.	CO1
	(d)	Write Cauchy's homogeneous linear equation of second order.	CO1
	(e)	Evaluate $\int_0^{\pi} \int_0^{a\sin\theta} r dr d\theta$.	CO2
	(f)	Change of order of integration in $\int_0^\infty \int_x^\infty \frac{e^{-y}}{y} dy dx$.	CO2
	(g)	Evaluate $\int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$.	CO2
	(h)	State Stoke's theorem.	CO3
	(i)	State Gauss divergence theorem.	CO3
	(j)	Write C-R equations in cartesian form.	CO3
	(k)	Define conjugate harmonic function.	CO4
	(1)	Write Laplace's equation in two dimensions.	CO4
	(m)	Evaluate $\int_{C} \frac{dz}{z-a}$ where C: $ z-a = R$.	CO4
		State Cauchy's integral theorem.	CO ₄

UNIT - I

2. (a) Solve
$$\frac{dy}{dx} + y \tan x = y^2 \sec x$$
. (7M) CO1
(b) Solve $x^2 y dx - (x^3 + y^3) dy = 0$. (7M) CO1

3. (a) Solve $\frac{d^2y}{dx^2} + a^2y = \cos ec \, ax$ using method of variation of parameters. (7M)

(b) Solve $(2x+1)^2 y'' - 6(2x+1)y' + 16y = 8(2x+1)^2$. (7M) CO1

UNIT-II

- 4. (a) Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration. (7M) CO2
 - (b) Evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x}{x^2 + y^2} dx dy$ by changing to polar coordinates. (7M) CO2

(OR)

- 5. (a) Using double integration, find the area of a plate in the form of a quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$ (7M) CO2
 - (b) Find, bytriple integration, the volume of the sphere $x^2 + y^2 + z^2 = a^2$. (7M) CO2

UNIT - III

6. Verify Green's theorem for $\int_C (xy + y^2) dx + x^2 dy$, where C is bounded by y = x and $y = x^2$.

- 7. (a) Show that the function f(z) defined by f(z) = √|xy| is not analytic at the origin even though Cauchy-Riemann equations are satisfied at the point.
 (7M) CO3
 - (b) Show that an analytic function with constant real part is constant. (7M) CO3

UNIT - IV

- 8. (a) If f(z) is a regular function of z, Show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2. \tag{7M} \text{ CO4}$
 - (b) Applying Milne-Thomson method, construct an analytic function f(z) = u + iv whose real part is $u = e^x \cos y$. (7M) CO4

(OR)

- (a) Verify Cauchy's theorem by integrating e^{iz} along the boundary of the triangle with the vertices at the points 1 + i, -1 + i and -1 i. (7M) CO4
 - (b) Evaluate, using Cauchy's integral formula $\int \frac{z+1}{z^2+2z+4} dz \text{ where c: } |z+1+i| = 2.$ (7M) CO4

CE/EC/ME121 (R20)

Hall Ticket Number:

F-2

CE/EC/ME121 (R20)

B.TECH. DEGREE EXAMINATION, JULY-2023

Semester II [First Year] (Regular & Supplementary)

MATHEMATICS - II

Time:	Three hours Maximum Ma	rks: 70
	Answer Question No.1 compulsorily. $(14 \times 1 = 14 \times 1)$ Answer One Question from each unit. $(4 \times 14 = 50 \times 1)$	4) 6)
1. An	swer the following:	
(a)	Define exact differential equation.	CO1
(b)	Solve the differential equation $(D^2 - 4D + 13)y = 0$.	CO1
(c)	Evaluate $\frac{1}{(D^2-1)}(x^2+x)$.	COI
(d)	Evaluate $\int_{x=1}^{3} \int_{y=0}^{1} xy^2 dx dy$.	COI
		CO ₂
(0)	Calculate $\iint r^3 dr d\theta$ over the area included	
(f)	between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$.	CO ₂
(1)	area changing the order of integration	
	for $\int_0^b \int_0^{a/b} \sqrt{b^2 - y^2} f(x, y) dx dy$.	CO2
(g)	If $\bar{r} = \bar{x}i + \bar{y}j + \bar{z}k$ then evaluate $\nabla^2(r^2)$	CO3
(h)	State Gauss divergence theorem.	CO3
(1)	Define analytic function.	CO3
(j)	Find the analytic function whose real part is xy.	CO4
(k)	Find a unit vector normal to the surface $x^3 + y^3 +$	
(1)	$z^{\circ} + 3xyz = 3$.	CO ₄
(1)	Write Cauchy-Riemann equations in polar form.	CO4
(m)	The directional derivative $\phi = xyz$ at the point	
2.5	$(1, 1, 1)$ in the direction of $\hat{\iota}$.	CO3
(n)	State Cauchy integral theorem.	CO4

UNIT-I

2. (a) Solve $x \cos x \frac{dy}{dx} + y(x \sin x + \cos x) = 1$. (7M) CO1 (b) Solve $(D^2 - 1)y = x \sin x + x^2 e^x$. (7M) CO1

3. (a) Solve
$$\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4}(x + xy^2) dy = 0$$
. (7M) CO1

(b) Solve $(x+1)^2 \frac{d^2y}{dx^2} + (x+1)\frac{dy}{dx} + y = 2 \sin (7M)$ CO1

UNIT - II

- 4. (a) Evaluate $\iint_R xy \, dx \, dy$ where R is the region bounded by x-axis and x = 2a and the curve $x^2 = 4ay$. (7M) CO2
 - (b) Evaluate $\iint r \sin \theta \ dr \ d\theta$ over the cardioids $r = a(1 \cos \theta)$ above the initial line. (7M) CO2

(OR)

- 5. (a) Change the order of integration in the integral and hence evaluate it $\int_0^1 \int_{\sqrt{y}}^{2-y} xy \, dx \, dy$. (7M) CO2
 - (b) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates. (7M) CO2

UNIT - III

- 6. (a) Find the directional derivative of the function f = x² + y² + 2z² at the point P (1, 2, 3) in the direction of the line PQ where Q is the point (5, 0, 4).
 - (b) Define curl of a vector function and show that $A = (x^2 + xy^2)i + (y^2 + x^2y)j$ is irrotational. (7M) CO3

- 7. (a) Find the analytic function $f(z) = u(r, \theta)$, + iv (r, θ) , when $v(r, \theta) = r^2 \cos 2\theta r \cos \theta + 2$. (7M) CO3
 - (b) Show that the real part of an analytic function f(z) = u + iv is harmonic. (7M) CO3

UNIT-IV

- 8. (a) If f(z) = u + iv is an analytic function of z and if $u - v = e^x(\cos y - \sin y)$ find f(z) in terms of z. (7M) CO4

 - (b) If f(z) is a regular function of z, prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$ (7M) CO4

(OR)

- 9. (a) Evaluate $\int_C (y-x-3x^2i)dz$, where c consists of the line segments from z = 0 to z = i and the other from z = i to z = 1 + i. (7M) CO4
 - (b) Integrate by Cauchy's integral formula $\frac{z^2}{z^2-1}$ counter clockwise around the circle $|z+1-i| = \frac{\pi}{2}$. (7M) CO4

ale ale ale ale

CE/EC/ME121 (R20)

Hall Ticket number:								

fill-2

CE/EC/ME121 (R20)

CO₃

CO₄

B.TECH. DEGREE EXAMINATION, JANUARY-2023

	Semester II [First Year] (Supplementary)	
	MATHEMATICS-II	
Time:	Three hours Maximum Mar	ks: 70
	Answer Question No.1 compulsorily. $(14 \times 1 = 14 \text{ Answer One Question from each unit.})$	
1. An	swer the following:	
(a)	Find the integrating factor of $\frac{dy}{dx} + 2xy = e^{-x^2}$	CO1
(b)	d^2v	COI
(c)	Solve $(D^2 + 16)$ y = 0.	CO1
(d)	Evaluate $\int_0^2 \int_0^{x^2} y dx dy$	CO2
(e)	-T -Y	CO2
(f)	Transform $\int_0^a \int_0^{\sqrt{a^2-x^2}} (x^2+y^2) dx dy$ to polar	
	coordinates.	CO2
(g)	Define irrotational vector.	CO3
(h)	State Green's theorem.	CO3
(i)	Show that the function $f(z) = xy + iyis$ everywhere	
	continuous but is not analytic.	CO3
(j)	State the necessary and sufficient conditions for a	
	function $f(z)$ to be analytic.	CO4
(k)		CO4
(1)	72 1 4	CO4
0.0000000000000000000000000000000000000	NO DESCRIPTION OF THE PROPERTY OF THE PARTY	

(m) If $\bar{r} = x\hat{i} + y\hat{j} + z\hat{k}$ is position vector, then the value

(n) Find the harmonic conjugate of $u = x^3 - 3xy^2$.

of $\nabla(\log r)$.

UNIT – I

2. (a) Solve $(1 + y^2)dx = (\tan^{-1} y - x)dy$ (7M) CO1

(b) Solve $(D^2 + 1)y = \sec x$. (7M) CO1

(OR)

3. (a) Solve $(1 + xy + x^2y^2)ydx + (x^2y^2 - xy + 1)xdy = 0$ (7M) CO1

(b) Solve $(x^2D^2 - 3xD + 1)y = \frac{\log x \sin(\log x) + 1}{x}$ (7M) CO1

UNIT - II

4. (a) Evaluate $\int_0^a \int_y^a \frac{x}{x^2 + y^2} dx dy$ by transforming into polar coordinates. (7M) CO2

(b) Evaluate $\iint \int xyz \, dx \, dy \, dz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$. (7M) CO2

(OR)

- 5. (a) Change the order of integration in $\int_0^1 \int_x^{\sqrt{x}} xy \, dx \, dy \quad \text{and hence evaluate the integral.}$ (7M) CO2
 - (b) Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r = 2 \sin \theta$ and $r = 4 \sin \theta$. (7M) CO2

UNIT - III

- 6. (a) Find the angle of intersection of the spheres $x^2 + y^2 + z^2 = 39$ and $x^2 + y^2 + z^2 + 4x 6y 8z + 52 = 0$ at the point (4, -3, 2) (7M) CO3
 - (b) Prove that the function $f(z) = \sqrt{xy}$ is not analytic at the origin even though the C-R equations are satisfied there at. (7M) CO3

7. State and verify Gauss divergence theorem for $\bar{f} = (x^3 - yz)i - 2x^2yj + zk$ taken over the surface of the cube bounded by the planes x = y = z = a and coordinate planes

CO₃

UNIT - IV

- 8. (a) If u(x,y) and v(x,y) are harmonic functions in a region R, prove that the function $\left(\frac{\partial u}{\partial y} \frac{\partial v}{\partial x}\right) + i\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)$ is an analytic function. (7M) CO4
 - (b) Find the value of 'p', if the function

$$f(z) = \frac{1}{2}\log(x^2 + y^2) + i \tan^{-1}\left(\frac{px}{y}\right) \text{ is analytic.}$$
 (7M) CO4

(OR)

- 9. (a) Evaluate $\oint_C \frac{e^z dz}{(z+1)^2}$, where C is the circle |z-3|=3 (7M) CO4
 - (b) Evaluate $\oint_C \frac{(2z+1)^2 dz}{z^8 (4z^3+z)}$ over a unit circle C. (7M) CO4

CE/EC/ME121 (R20)

Hall Ticket Number:									

file-2

CE/EC/ME121(R20)

B.TECH. DEGREE EXAMINATION, OCTOBER-2022

Semester II [First Year] (Regular & Supplementary)

MATHEMATICS-II

Time: Three hours

Maximum Marks: 70

Answer Ouestion No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$

- 1. Answer the following:
 - (a) Write Linear differential equation of first order in y. CO₁
 - Write the condition for exact differential equation. CO₁
 - (c) Solve $\frac{ydx xdy}{x^2 + y^2} = 0$ CO₁
 - CO₁
 - (d) Solve $(D-2)^2 y = 0$ (e) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{x}} xy \, dy \, dx$ CO₂
 - Change of order of integration in CO2
 - $\int_{0}^{a} \int_{0}^{\sqrt{a^2-y^2}} f(x,y) dx dy$
 - (g) Evaluate $\iiint_{1}^{1} xyz \, dz \, dy \, dx$ CO₂
 - State Green's theorem in a plane. CO₃
 - Evaluate $\int r.d\overline{r}$ where $r = x\overline{i} + y\overline{j} + z\overline{k}$ CO₃
 - (i) Define analytic function. CO3
 - formula for f'(z)(k) Write the f(z) = u(x, y) + iv(x, y)CO₃
 - Define Harmonic function. CO₄

(m) Evaluate $\int_{c}^{z^{2}} dz$ where c is the straight line from z = 0 to z = 2 + i. CO4
(n) State Cauchy's integral formula.

UNIT-I

2. (a) Solve
$$(x+y+1)\frac{dy}{dx} = 1$$
. (7M) CO1

(b) Solve
$$2xydy - (x^2 + y^2 + 1)dx = 0$$
. (7M) CO1

(OR)

- 3. (a) Solve $y'' 6y' + 9y = \frac{e^{3x}}{x^2}$ using method of variation of parameters. (7M) CO1
 - (b) Solve $x^2y'' + xy' + 9y = \sin(3\log x)$. (7M) CO1

UNIT-II

- 4. (a) By changing the order of integration, evaluate (7M) CO2 $\int_{0}^{16} \int_{E}^{4} \cos y^{3} dy dx$
 - (b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} e^{-(x^2+y^2)} dy dx$ by changing to polar coordinates. (7M) CO2

- 5. (a) Find the area lying inside the cardioid $r = a(1+\cos\theta)$ and outside the circle r = a. (7M) CO2
 - (b) Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$. (7M) CO2

UNIT - III

6. Verify Gauss divergence theorem for the field $\overline{F} = x^3 \overline{i} + y^3 \overline{j} + z^3 \overline{k}$ taken over the cube bounded by $0 \le x \le a$, $0 \le y \le a$, $0 \le z \le a$.

(OR)

7. (a) Show that the function f(z) defined by $f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ is not analytic at the origin.

(b) Determine *p* such that

Determine p such that $f(z) = \frac{1}{2} \log(x^2 + y^2) + i \tan^{-1} \left(\frac{px}{y}\right) \text{ be an analytic}$ function. (7M) CO3

UNIT - IV

- 8. (a) If f(z) is an analytic function with constant modulus, show that f(z) is constant. (7M) CO4
 - (b) Show that the function $u = \frac{1}{2} \log (x^2 + y^2)$ is harmonic and find its harmonic conjugate. (7M) CO4

(OR)

- 9. (a) Verify Cauchy's theorem for the function $f(z)=3z^2+iz-4$ if c is the square with vertices at $1\pm i$ and $-1\pm i$. (7M) CO4
 - (b) Evaluate $\int_{c} \frac{\log z}{(z-1)^3} dz$ where $c:|z-1| = \frac{1}{2}$ using Cauchy's integral formula. (7M) CO4

CE/EC/ME121(R20)

(7M) CO3

Hall Tieet Number:							_
	Tener.	1			T		

file-2

CE/EC/ME121(R20)

B.TECH. DEGREE EXAMINATION, FEBRUARY-2022

Semester II [First Year] (Supplementary)

MATHEMATICS-II

Time: Three hours

State Gauss divergence theorem.

(k) Write C-R equations in polar form.

Maximum Marks: 70

CO3

CO₃

CO3

Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$

1. Answer the following: (a) Write Bernoulli's equation. CO₁ (b) Determine whether y(1+xy)dx + (4y-x)dy = 0 is exact or CO₁ not. (c) Solve $(D^2 + 1) y = 0$. COL (d) Find the integrating factor for $\cos^2 x \frac{dy}{dx} + y = \tan x$ CO₁ (e) Evaluate $\int_{1}^{2} \int_{1}^{3} xy^2 dxdy$ CO₂ π a sin θ (f) Evaluate $\int \int r dr d\theta$ CO₂ $\iiint xy^2 z dx dy dz$ CO2 (g) Evaluate (h) Change the following integral into polar form $2a\sqrt{2ax-x^2}$ CO₂

If S is a closed surface enclosing a volume V and if

 $\mathbf{R} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ then write the value of $\int R.N \ ds$

- (l) Define Harmonic function.
- (m) Evaluate $\int_{-z}^{z} dz$ along the line y = x / 2.
- (n) State Cauchy's integral formula.

UNIT-I

- 2. (a) Solve $\frac{dx}{dy} \frac{x}{y} = 2y^2$. (7M) CO1
 - (b) Solve $(x^2y-2xy^2) dx-(x^3-3x^2y) dy = 0.$ (7M) CO1

(OR)

- 3. (a) Using method of variation of parameters solve $y'' + 4y = \tan 2x$. (7M) CO1
 - (b) Solve $x^2y'' + xy' + y = \log x \sin(\log x)$. (7M) CO1

UNIT - II

- 4. (a) Evaluate $\int_{0}^{1} \int_{e^{x}}^{e} \frac{dxdy}{\log y}$ by changing the order of integration. (7M) CO2
 - (b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates. (7M) CO2

- 5. (a) Find the area lying between the parabola $y = 4x x^2$ and the line y = x. (7M) CO2
 - (b) Find the volume bounded by the xy-plane, the cylinder $x^2 + y^2 = 1$ and the plane x + y + z = 3. (7M) CO2

6. Verify Green's theorem for $\int_{C} [(3x-8y^{2})dx + (4y-6xy)dy]$ where C is the boundary of the region bounded by x = 0, y = 0 and x + y = 1.

(OR)

- 7. (a) If w = logz, find dw/dz and determine where w is non-analytic. (7M) CO3
 - (b) Show that $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0$ (7M) CO3

UNIT-IV

- 8. (a) Find the analytic function f(z), whose real part is sin2x / (cosh2y cos2x). (7M) CO4
 - (b) Find the harmonic conjugate of $v(r,\theta) = r^2 \cos 2\theta r \cos \theta + 2$. (7M) CO4

(OR)

- 9. (a) Evaluate $\int_{c}^{c} (z-z^2)dz$ where C is the upper half of the circle |z| = 1. (7M) CO4
 - (b) Evaluate f(2) and f(3) where $f(a) = \int_{c}^{2z^{2}-z-2} dz$ and C is |z| = 2.5 (7M) CO4

CE/EC/ME121(R20)

CE/EC/ME121(R20)

B.TECH. DEGREE EXAMINATION, OCTOBER-2021

Semester II [First Year] (Regular)

MATHEMATICS-II

Time:	Thean	house	

Maximum Marks: 70

CO₄

CO₄

Answer Question No.1 compulsorily. $(14 \times 1 = 14)$ Answer One Question from each unit. $(4 \times 14 = 56)$

1. Answer the following:

(k)

(1)

Ans	wer the following:	
(a)	Write the Leibnitz's form of linear equation.	CO1
(b)	Find the integrating for the differential equation	
	$(x^{2}y - 2xy^{2})dx - (x^{3} - 3x^{2}y)dy = 0$	CO1
(c)	Solve $(D^2 + 2D + 5)y = 0$	CO1
(d)	Write the general form of Cauchy's equation.	CO1
(e)	Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$	CO2
(f)	Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} xy dy dx$	CO2
(g)	Evaluate $\iint_{0}^{3} \int_{0}^{2} xyz dz dx dy$	CO2
(h)	State Stokes' theorem.	CO3
(i)	State Gauss divergence theorem.	CO3
(i)	Write C-R equations.	CO3

(m) State Cauchy's theorem. CO4

(n) Evaluate
$$\int_{C}^{\infty} \frac{\sin z}{\left(z - \frac{\pi}{3}\right)^4} dz$$
 where \underline{C} is the circle $|z| = 1$ CO4

Define Harmonic function.

State Milne Thomson method.

UNIT - I

2. (a) Solve $\cosh x \frac{dy}{dx} + y \sinh x = 2 \cosh^2 x \sinh x$

(7M) CO1

(b) Solve $(D^2-4)y = x\cosh x$

(7M) CO1

(OR)

- 3. (a) Solve $(2x^3y^2 + 4x^2y + 2xy^2 + xy^4 + 2y)dx + 2(y^3 + x^2y + x)dy = 0$ (7M) CO1
 - (b) Solve $(D^2+1)y = cosec x$

(7M) CO1

UNIT - II

4. (a) Change the order of integration in $I = \int_{0}^{4a} \int_{x^2/4a}^{2\sqrt{ax}} dy dx$ and hence evaluate.

(7M) CO2

- (b) Find the volume bounded by the cylinder $x^2 + y^2 = 4$ and the planes y + z = 4 and z = 0.
- (7M) CO2

(OR)

- 5. (a) Find the area lying inside the circle $r = a \sin \theta$ and outside the cardioid $r = a(1 \cos \theta)$. (7M) CO2
 - (b) Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$. (7M) CO2

UNIT - III

6. Verify Stoke's theorem for the vector field $\overline{F} = (x^2 - y^2)\overline{i} + 2xy\overline{j}$ over the box bounded by the planes x = 0, x = a, y = 0, y = b, z = 0, z = c if the face z = 0 is cut.

CO₃

(OR)

7. (a) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy Riemann equations are satisfied thereof. (7M) CO3

(b) In f(z) is an analytic function of z, then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |\text{Re } f(z)|^2 = 2|f'(z)|^2$ (7M) CO3

UNIT-IV

- 8. (a) Determine the analytic function whose real part is $e^x[(x^2 y^2)\cos y 2xy\sin y]$ (7M) CO4
 - (b) Evaluate $\oint_C \frac{e^z}{z^2 + \pi^2} dz$ where C is |z| = 3.5 (7M) CO4

(OR)

- 9. (a) Find the analytic function f(z) = u + iv if $u v = (x y)(x^2 + 4xy + y^2)$ (7M) CO4
 - (b) Evaluate $\oint_C \frac{e^{2z}}{(z+1)(z-2)} dz$ where *C* is |z| = 2.5 (7M) CO4

CE/EC/ME121(R20)